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A METHOD FOR DETERMINING THE CAMBER AND TWIST OF A SURFACE TO SUPPORT A
GIVEN DISTRIBUTION OF LIFT, WITH APPLICATIONS TO THE LOAD OVER
A SWEPTBACK WING

By Doris CorEN

SUDMDMARY

A graphical method is described for finding the shape (camber
and twist) of an airfoil having an arbitrary distribution of lift.
The method consists in replacing the lifiing surface and its wake
with an equivalent arrangement of vortices and in finding the
associated vertical velocities. By a division of the vorfex patfern
into circular strips coneentric about the downwash point instead
of into the usual rectangular strips, the lifting surface is reduced
for each downwash point to an equivalent loaded line for which
the induced rvelocity is readily computed. The ratio of the ver-
tical velocity to the stream celocity is the slope of the surface in
the free-stream direction.

In order to illustrate the application of the method, the shape
of the wing consistent with the pressure distribution giren by the
two-dimensional theortes has been found for three wings: an
elliptical wing of aspect ratio 6 with 30° sweepback s treated in
some detail; final resulfs are presented for two unswept elliptical
wings of aspect ratios 6 and 3, respectively, to show the degree of
approzimation incolved in the use of the two-dimensional theories
for three-dimensional flow. It is concluded that the two-dimen-
sional theories are adequate over most of the span of a straight
wing but that the more exact treatment is necessary in the tip
regions or if the wing is swept.

Application of the method to solve the reverse problem—finding
the lift distribution orer a giren surface—is also illustrated.
The load over an uncambered, untwisted, elliptical wing with 30°
sweepback has been caleulated by successive corrections of the
assumed vortex distribution. The result indicates a 14-percent
loss in total lift due to the introduction of sweepback with the
greatest loss taking place af the cenier of the span.

INTRODUCTION

Because of the effect that the pressure gradients over the
surface of a wing have on the drag, it would be of consider-
able advantage to be able to specify the camber and the
twist of a wing that would produce & desired distribution of
lift. Present methods of airfoil design depend on two-
dimensional-flow theories, which treat the spanwise and
chordwise components of the flow independently. Although
a theoretical treatment of three-dimensional flow is given by
Prandt] (reference 1) and calculations have been made for
special cases (references 2 and 3), no practical procedure for
the arbitrary lifting surface is indicated.

In the present paper, a method is described whereby the
camber and the twist of a surface of arbitrary plan form may

be determined so as to support a specified distribution of
lift. For this method, the lifting surface and its wake are
replaced by a distribution of vortices in a plane. The verti-
cal velocity induced at any point on the surface by the vortex
system defines the slope of the surface at that point. Thus,
the problem becomes the determination of the induced veloci-
ties. A method is presented for determining these velocities
which, by employing chiefly graphical means, eliminates the
difficult integrations that have limited previous work.

The substitution of a plane vortex sheet for the hfting sur-
face is analogous to the standard procedure of the two-
dimensional thin-wing-section theory (see, for example,
reference 4, p. 87), in which the flow about a thin, cambered
section is approximated by an arrangement of vortices along
the chord line. Inasmuch as the induced normsal velocities
are assumed to be substantially the same at the chord line
and at the airfoil, the ratio of these velocities to the free-
stream velocity gives the slope of the eamber line. In three-
dimensional flow a reference plane is assumed, so situated
that the airfoil may be considered to be a slight deviation
from it. Upon this plane the plan form and the pressure
distribution of the surface are projected. As in two-
dimensional treatments, the slope is calculated in the free-
stream direction.

The substitution of a vortex sheet for a lifting surface is
discussed at some length by Von Kdrmdn (reference 5, p. 15).
In the application of the method, however, the vortices are
generally assumed to have a rectilinear distribution. Even
with this limitation, the evaluation of the integrals involved
in finding the induced velocities presents considerable diffi-
culty. (Seech.IV,sec. 15, of reference 5, where the formulas
are developed for a rectangular wing.) The integration is
greatly simplified by the introduction of polar coordinates
so chosen that the elements of integration are cireular strips
concentric about the point at which the downwash is to be
found. Application of this method is not restricted to any
particular arrangement of vortices or to any specific form
of the surface.

Although the proeedure described is for the determination
of the surface that will fit a required pressure distribution,
it may also be adapted to effect the reverse analysis, that is,
to find the pressure distribution over an arbitrary surface.
Such an application of the method is made to find the pres-
sure distribution over a flat wing of elliptical plan form
swept back 30° at the 50-percent-chord line.
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DETERMINATION OF THE VORTEX PATTERN FROM THE
PRESSURE DISTRIBUTION

The vortex pattern is obtained by integrating the chord-
wise pressure distribution back from the leading edge at
several stations along the span. The circulation or vortex
strength T will be shown to be proportional to this integral;
the lines connecting the points where the values of the inte-
gral are equal therefore define the vortex lines.

In figure 1, a distribution of lift is arbitrarily specified for
a tapered wing in straight flight. The corresponding vortex
lines are drawn on the plan form of the wing and in the walke
in figure 2 to show a typical vortex pattern.

FIGURE 1.—An arbitrary distribution of lift assumed for a tapered wing iu straight flight,
from which the vortex lines of figure 2 were derived.

FioUvre 2.—Contour lines of eirculation function, or vortex pattern, obtained by integrating
the pressure distribution of figure 1.

The demonstration of the relation between the pressure
distribution and the vortex pattern is given in the following
paragraphs.

In the replacement of a lifting surface by a vortex sheet,
the assumption is made that the pressure increments due
to the presence of the airfoil in the stream are equal and op-
posite on the upper and lower surfaces, as would be true in
the case of a thin plate at a small angle of attack. The
substitution is still admissible in the calculation of lift when
the thickness is not negligible, because the difference between
the velocities on the upper and lower surfaces at any position
and not the magnitude of each increment determines the
lift at that point.

Thus, let AV, and AV, represent for any point the local
veloecity incFements on the upper and the Jower surfaces due
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to the plate or to the vortices that are cquivalent to it; let
#, and «; be the magnitude of their components in the dirce-
tion of the free-stream velocity V; let v, and #; be the compo-
nents normal to V in the plane of the wing; and let w, and
w; be the components normal to the wing. Then the
pressure on the surfaces would be, if p is the air density,

2

pu—y | VA,
=2 () ot

=—;—'p(I’2+2Y’ua+uf+vu2+wf)
If second-order effects are negleeted, this expression reduces
to
pu=g (74270,
Similarly,
pi=5 o(V:+27%)

The resulting lift per unit area is then the difference in
pressure, or

Ap=5 p(2)(wu—10) (1)

The derivation of the equivalent vortex pattern follows
directly from equation (1). If d,I" represents the element

. of circulation around a small length ds, parallel to V, over

which the velocities u, and ¥, may be considered consiant,
the following relation holds:

dT=(u,—u;)ds (2)

from which equation (1) may be rewritten

ol ,
! rZl. .
Ap 3! o8 ; (3)

Thus, the lift at every point is proportional to %% or the

cross-stream component of the vorticity. Consider now a
narrow strip of varying width just behind the leading edge
of the vortex sheet, such that fAp ds is constant along the
strip.  Such a strip would represent a vortex element of
strength fAp ds. A second voriex element could be defined
in the same way to lie just behind the first. From equa-
tion (3), however,

1
p—Vpr ds=T 4

Equation (4) defines the function I' for any point on the
lifting surface as the total circulation ahead of the point.!
Thus, the boundaries of the vortex clement are lines of equal I'.

t The function T Is numerically equal to the difference in velocity potentisl hetween ths

surfaces, for, at any point, u.‘=a—§s—“ and u¢=-aa%', where ¢« and ¢ are the potential functions
over the upper and lower surfaces of the alrfoil, respectively. Trom enuation (2),
Or_dgy_d1
28 a5  o¢
or
T=¢u—oi
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If the vortex elements are reduced in size and increased in
number to form a continuous vortex sheet, their pattern is
indicated, as in figure 2, by the contour lines of the funetion T'.
In order to satisfy the Kutta condition that there be no
pressure difference across the trailing edge, these lines must
leave the wing parallel to the stream velocity, as shown
by equation (3). They then follow the streamlines down
the wake. The drawing of these contour lines from the in-
tegral of the pressure distribution is the first step of the
procedure for finding the camber and the twist of the lifting
surface.

DETERMINATION OF THE INDUCED VERTICAL VELOCITIES

The induced vertical velocity at any point of the plane is
obtained by integrating the Biot-Savart equation over the
entire vortex pattern just described. The resulting double
integration is reduced to a single integral by a relatively
simple graphical procedure if a system of polar coordinates
having its origin at the point is employed.

Let it be required to find the downwash w at a point P of
the vortex pattern just described. Consider a small sector
of the plane included between two radii from P, the angle
hetween theradii being dy (ig.3). Atany distance 7 from P,

Vortex
elemen?

P

FiGURE 3.—Diagram for derivation of downwash formula dw= —4—31,2—{ drdd.

the radii will cut off a small length dI of a certain vortex
clement. If the-width of the element in the radial direction

is dr, the strength of the vortex element IS dr Then,
by Biot-Savart’s rule, the downwash at P due to the small
length of vortex will be

dip— — 1 10T

ir 2 0r

where B is the angle between the vortex element and the
radius. The length dl sin 8 is the projection of dl on the

——drdlsin 8 (5)

circumference of the circle of radius » around P, so that
dl sin 8=r dy
and
1 or
dw= " dr dy (6)

The total downwash at P would be obtained by integrating
equation (6) over 0=r—> and through 360° of ¥. Thus,

S 2=
we f f 1 O 4y dr )
4] ¢

Azr Or

In order to evaluate the double integral of equation (7}, the
relation (Liebniz’s ruIe)

is used to reduce the first mtegratlon to a graphical procedure.

The first step in evaluating w is to draw on the vortex pat-
tern circles of various radii about P. Around any one circle
(see fig. 4) the function T" will take on values indicated by the
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FIGCRE 4.—Variation of T around circle, plotted against ¢ from intersections of the circle
with the contoar Iines. Additional points at =0 and at e&:%are computed.

intersections of the circle with the contour lines of I'. If
these values of I' are plotted against the angle ¢ — measured,
let us say, from the free-stream direction — graphical inte-

2=
gration will orivef
more convenient to plot I' against ¢/2z. Then theintegral

will be the average value of T around the circle, designated
in the usual way by

T d¢ for each circle. It Is somewhat

= 2z £
T [ g v (®)
Then T is a function of r. (Seefig. 5.) From equation (8),
2< JT dT
so that
© 1 dr
w= ——J; 2—1‘ % dr (1 l)
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F1aURE 5.—Typical curve for T (r}. (Curve for point P of fig. 4.)

For the evaluation of equation (11), first plot T against
r, as in figure 5. The curve will approach an asymptote,
which is readily found from the expression for the load

. d
curve across the wake. Thus, when 7 is large, d¢=7y and

equation (9) reduces to

— 1 b2
P=5— I'(y) dy

2rr —bf2

(12)
where y is the spanwise dimension and 4/2 is the semispan
of the wing. If the area under the load curve across the
walke is A, then for very large values of r

i
27r

(13)
The plot of T(r) should be carried out to a value of » such
that the curve approaches this asymptote within the
aecuracy of the work.

The load curve of figure 5 is a typical one. The following
method has been found particularly suited to the determina-
tion of the downwash at the origin of such a curve. The
first section of the curve (designated by I), starting with
zero slope, is approximated up to the inflection point, or to
a point 7, somewhat ahead of it, by an expression of the
form I'=ay—ay®—a*. Additional terms might be used
but are generally not necessary. The downwash due to a
curve of the general form

-fza(,—a,zr” (n>1)

at r=0 is given by

where 7, and rp are the end values of r for the interval over
which the curve extends.  The downwash contributed by the
first section of the load T=a,—ayr?—ag* is therefore

w{I)= azro+§ are’ - (14)
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The part of the curve immediately following r=r, has a
critical effect on the value of the downwash, at the same time
being usually too irregular to be approximated for any
distance by a simple algebraic expression. It is therefore
advisable to proceed as in numerical integration, dividing
the curve into a finite number of small seetions and consider-
ing each section of the curve to have a simple mathematical
expression. Because the effectivencss of the variation of
load depends on its closeness to the downwash point, the
intervals are taken in geometric rather than arithmetic
progression. Thus, the abscissas are 7y, krg, k%o, . . . eclc.,
where the ratio £ is a number, usually between 1 and 2,
determined by the size of the intervals required for accurate
representation of the curve immediately following r,. The
usual procedure now would be to assume the curve to be g
straight line over each small interval; but when the curvature
is largely in one direction, as it is in these curves, this assump-
tion introduces a small but cumulative error, which may
amount to 10 percent or more in the total. The following
method, which fits the curve with a suecession of parabolas,

‘is found to give very good accuracy with no increase in

computation. The method is best presented in tubular
form:
Computation of
T Tntl = - - ATaa AT1me1
L Oy AT1x A4 e —
o Ts _
Ti~Te ale
- re
0 71 Tt -
Fa-To ah
_ Te
T2 T2 -
Ti-Te an
s
1 s I -
R ah
_ r1
£ Ty -
TeTi 2k
_ T«
2 5 ¥ -
Fe-Ti a4
_ re
e T
F!.\'-l - F};\' -1 %-!
B Tx-1
N-1 rex-i | Tix-1 -
Trw=Ta-t ELiLl
- Try-g
Ty Ty
Nl o= K-l o
_ . log k Potals: Al'ta Al'taty
K=tk (’“ k=1 ‘1) ;0 Tin =
Kx———l—l—o-g—lE —~1 AT: AT1akt
k=1 w-k(lc—n (1‘0273. +I”2—f;n )
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In the following table are given the constants K, K, and

1

FA=T) for several convenient values of k. Since the choice

of k is not critical, the values included should serve with-
out interpolation.

1

k K A EE—1)
102 0. 01000 0. 01000 49.02
1.05 02382 . 02420 19.04
107 03667 . 03340 13.35
110 +05325 . 04620 9.001
115 08222 - 006827 5.797
1.20 27 .08840 4.167
1.25 1446 L1074 3.200
1.30 . 1780 .1255 2,564
1.50 .3216 -1891 1.333

The value of the ratio & that will give sufficiently small
increments of r where the slope is large will probably be
found to be smaller than necessary after the curve has become
more regular and the distance from the origin larger. The
computations may be interrupted here and the downwash
w(1I) contributed by the second section may be calculated.
Then, using the last abscissa ryy as a new starting point and
a larger value of £, compute in the same way the downwash
w(IIT) due to the remainder of the curve to a point where
the difference between the curve and its asymptofe is
negligible.

For the portion of the curve extending to infinity (section
IV of fig. 5), the previously determined asymptote is used
and the downwash found analytically. Thus, from a large
value R of r out to infinity,

wvy— L[] iy

2)r v dr

dr

from equation (10); and if dT/drisfound from equation (13),

A =
w(IV) =ST—R2 (13)

The downwash at P is then the sum
w(I} L+ w(Il) L+ w(IIl)+wlV)

It is interesting to note that the three-dimensional problem
has been reduced to one of two-dimensional flow, as may be
seen by replacing T with its original expression (equation (9))
in equation (11), which may then be written

df:’r dy
R L —
w(0) = fﬂ dr

L (r—0) (16)
Equation (16) is recognized as the usual formula for the
induced normsl velocity, with the load expressed in the
form of a definite integral, and suggests that the first integra-
tion (except that the factor 1/27 was introduced) was equiv-
alent to concentrating all the vorticity around each circle
at a single point at the distance r along a line of infinite
extension from P. The loaded line of figure 5 may be con-

547

sidered, except for the factor 1/2x, to be the equivalent of the

original lifting surface in its effect at P.
EXAMPLES

The method will be applied to check the elliptical dis-
tribution of 1ift conventionally assumed for an uncambered
elliptical wing. This distribution, arrived at by combining
the two-dimensional theories, does not take account of
sweepback or siagger of the lifting elements. In the ap-
plication of the present method, three cases of elliptical
chord distribution will be investigated, two with a straight
50-percent-chord line, and one with the 50-percent-chord
line swept back about 30°, the sections remaining parallel
to the plane of symmetry. The ealculation of the vertical
velocities over the sweptback wing will be carried out herein
in some detail in order to illustrate the method. The down-
wash will be found at several points along the three-quarter-
chord line. The downwash at the three-quarter-chord
point of a section is of particular interest because, from the
thin-wing-section theory (reference 6, p. 82), the effective
angle of attack of the section is given by the slope of the
camber line in the neighborhood of that point, if the camber
is approximately circular.

SWEPTBACEK WING

For the chordwise lift distribution, the two-dimensional
flow around a flat plate as given by the thin-wing-section
theory is assumed. This lift distribution and the eireulation
function obtained by integrating it are shown in figure 6. In

20 — Lo
L] .
i—z—/(B + sin 8)
\ ol #' . i /
aAp \ : 8
\
p(co/z) \
.6
r
I L
1%
T A1f = Ki(csc 8+ cot Bl — 1 4
\ // /0(00/2
/ 2
\
/ —
\\
L 1 0
0/ 5 a =5 -/
LE cos 8 TE

FiGTRE 6.~Chordwise pressure distribution and ecirculation funection assumed for figure 7
from the two-dimensional-flow theory for & fiat plate.
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this case the mathematical expression for the pressure differ-
ence is known and T' can be found analytically. For con-
venience, the units have been so chosen that the maximum
value of I' is 1.0. If, further, all lengths are expressed in
terms of the semispan (measured perpendicular to the plane
of symmetry) as the unit of length, the total circulation
spanwise from the center line. The resulting contour lines
of T appear, for the sweptback wing, as in figure 7. The
points at which the downwash will be found are also shown.

\4
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A A — N
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o/// o~ 7 P-4
s . B
2 .95 n
= L7 N
" A4C )
D
=40
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FiGure 7.—Contour lines of elliptically distributed load over swepthback wing and wake.
Aspect ratio, 6.

In order to find the downwash at point B, circles spaced
as shown in figure 8 are drawn about this point and the
values of T indicated by the contour lines intercepted by
each circle are plotted against the angular location ¢ of the
points of intersection. Of the curves for (Y) corresponding to
the circles of figure 8, five typical ones are shown in figure 9.
The curves designated for »=0.067 and r=0.20 are
characteristic of circles close to the downwash point; the

curve for r=0.216 includes a point <%r =0.883) at which the

= e

Freure 8.~—Circles of integration drawn on vortex pattern. The eircles corresponding to
the curves of figure 9 are identified.

=l 60

circle is tangent to the leading edge of the wing; the eirele
of radius 0.733 lies partly ahead of the wing, where =0,
partly on the wing, and partly in the wake; the ecirele
of radius 1.60 traverses the vortex pattern aeross the wake
only.

The results of integrating these curves are plotted against
rin figure 10. Since the circulation across the wake is+/1—7,
the integral A is /2 and the asymptote for the curve of '(r)

is, from equation (13), 'I—"=—1— The downwash is now caleu-

ir
lated as follows:
It is found that the polynomial

T=0.8335—2.70r2—6.57r*

fits the curve of T through »=0.20. Then the downwash con-
tributed by the section from 0 to 0.2 is, from equation (14)
w(I)=0.575
Section II, with £ smell, is taken to include both inflection
points (there is a third inflection point at 1.78, but its effeet
isnegligible). The following table shows the downwash com-
putations for this section and for the succeeding one:

r. F AT A,F:. A-ff.n
in n
Sectlon IT; k=1.07
0. 200 0.715 —0.025 —0.125
214 690 =033 ) —0.185
. 229 . 857 — 02l — a2
. 245 . 636 it 016 el —. 070
. 262 . 620 —.o4 —.053 il
0 - 600 ~.013 —.050
.300 . 503 — ol o3
.321 . 582 ot . —.oi
%t 36 — oo " '
303 550 —. 010 - 020
Totals: ~. 329 —, 357
w(X1)=0.320
Seetion III; k=1.20
0.393 0. 550
_47 . 524 —0.0%8 o —0.06 0,008
. 568_ 497 — ot .o -
g -3 —.o7 ) —. 13
Ol Lol —. 062 —. 076
L9786 .317 > g 00
1.173 . 268 01 .02 -
1,408 .219 2 s . — 056
1.790 . 153 7 .otz -
2,028 131 oo ' —. 018
2.433 108 : ‘
Totals —. 274 -~ 320
w(IIl)=0.250

Section IIT extends to r=2.433, where TI'=0.108 and
4—lr=0.103f The downwash induced by the asymptote from

r=2.433 out to infinity is only W{B—S)zr or 0.011, about 1

percent of the total due to the curve of T, and the 5-pereent
error in the ordinate may therefore be neglected. The total
downwash at B is then

w1+ w(ID) +wdID) +w(IV)=1.156
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FIGURE 9.—Typical curves for the variation of I" around a circle. The curves shown correspond to the circles identified in fgure 8.
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FIGTRE 10.—Curve of T (r} for point B of figure 7.
The downwash at points A, C, and D is found in the The downwash is plotted against the spanwise location of

same way. Figure 11 shows the curves of T for these | the points in figure 12. The quantities I'n,, and 4/2, hereto-

fore assumed to be unity, are included to make the result

oimtss The asymptote —f‘=i is, of course, common to all . . . .
pomt ymp 4r d nondimensional. This curve of the downwash or vertical

the curves for this wing.

843107—50——36

velocity at the three-quarter-chord line, since the slope of the
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Fi1GURE 11.—Equivalent loaded lines for points A, C, and D of the sweptback wing of figure 7.

surface is w/V, is 2 measure of the amount of twist the wing
must have to sustain the assumed distribution of lift. If the
wing were actually flat, which was the premise in deriving
the distribution from the two-dimensional theories, w would
be equal to 1.0 all over the surface, so that the devia-
tion of the curve from the line w=1 indicates the amount
by which the two-dimensional theories are in error when
applied to three-dimensional flow. The discontinuity in
vorticity at the center line gives rise to a discontinuity in the
downwash, which goes to infinity everywhere along the
center section. This result indicates that the assumed condi-
tion, in which the vortex lines bend to form an angle, cannot
exist in practice.

L& ™~

L2 =
wfb Bl T
e ] Ba

81—

P ’ {ff,?qg-;urface theory.

S L{fm?g-/{ne! #hgor’y
i ERENERE ,

FIGURE 12,—Verticel velocity w at the three-quarter-ehord Hre of the sweptback wing with
distribution of load caleulated by two-dimensional-flow {hearies,

UNSWEPT WINGS—ASPECT-RATIO EFFECT

The corresponding curve for the straight elliptical wing of
aspect ratio 6 is shown in figure 13. In this case, the down-
wash was computed also at points along the quarter-chord
line. The slope of the surface was found to be less than the
slope at the corresponding three-quarter-chord points. The
positive camber thus indicated is very small at the center but
increases sharply near the tips.

The corresponding curves for the wing of aspect ratio 3
are shown in figure 14. Although the deviation from the
lifting-line-theory value is greater, on a percentage basis,
than in the case of aspect ratio 6, the agreement with lifting-
Iine theory is still rather good. It may be concluded that,
except near the tips, the two-dimensional theories may be
considered generally adequate for straight wings.

20

1.6

L2 0\.\7503_ 1
w2 e i R

.8 :

—— Lifting-surface theor
4 . ’ {ﬁ;r:)ng_?;z;;g ?ﬁgory&ry
, HENERE

FIGURE 13.—Vertical velocity w at points on straight elliptieal wing, aspect ratio of 6, with
distribution of load calculated by two-dimensional-flow theorles.
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FIGCRE 14.—Veriical veloeity w at points on straight elliptical wing, aspect ratio of 3, with
distribution of load caleulated by two dimensional-fiow thegries.

AN APPLICATION TO TEE REVERSE PROBLEM: THE LOAD
OVER A FLAT, SWEPTBACK WING

The results of the preceding calculations for the sweptback
wing (fig. 12) indicate that for a flat surface the vortex lines
over such a wing would actually be rounded off at the center
and the load in that region thereby reduced below that of the
adjoining sections. It is also apparent that the downwash
induced over the tip regions would have to be increased;
this would be accomplished by inereasing the density of the
vortex lines (or lift) toward the tips at the expense of the lif§
farther inboard.

Tith these requirements in mind, a second approximation
to the lift distribution was assumed; and the downwash at
points along the quarter-chord and three-quarter-chord line
was found. This approximation proved to be in error in
the opposite direction; that is, the downwash now increased
from center to tip. A slight modification of this second
distribution made the resulting downwash variation linear
along the span with, however, a smaller slope than given by
the two-dimensional distribution. Values of w for the quarter-
chord points fell along a line parallel to that for the
three-quarter chord and approximately 8 percent below if,
indicating a small amount of camber.

It was assumed that Interpolation between the second
distribution, as modified, and the first (two-dimensional)
approximsation, at the same angle of attack, would be a
fairly accurate solution to the problem. The curves pre-
sented are the result of this interpolation.

Figure 15 shows the final configuration of vortices for the
flat sweptback wing. The concentration of lift in any
region is proportional to the density of the lines. The entire
pattern is independent of angle of attack, except as the basic
theory breaks down at large angles of attack.

In figure 16 is shown the span loading. The calculated
load is compared with the elliptic load, which has been found
to be fairly accurate for the straight wing at an aspect ratio

‘same total lift.

of 6. The induced camber noted in figure 13 for this case
is approximately the same, on the average, as remained in
the sweptback wing after the last adjustment, so that the
wings may be considered comparable. :

When the two wings are at the same angle of attack,
measured by the slope of the surface at the three-quarter-
chord line, the area under the lift curve for the sweptback
wing is 86 percent. of that under the ellipse, indicating a loss
due to sweepback of 14 percent of the total lift. The effect
of sweepback on the spanwise variation of lift is indicated
by the curve for the straight elliptic wing supporting the
The effects of sweepback aré seen’in the
higher concentration of load at the wing tips and the depres-
sion in the load eurve near the center.

USE OF THE METHOD AT WING TIPS

Tt is expected that the method outlined herein will be
especially useful in investigating the nature of the flow near
the wing tip, where two-dimensional approximations no
longer can be applied. The more accurate three-dimensional
treatments available are also unsuitable for this purpose
because the calculations fail to converge at the tips. The

r=0.893

FIGURE 15.—Distribution of vortieity or eireulation over fiat elliptical wing, aspec}f ratio of 6,
swept back 30°.
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FIGURE 16.—8pan-load curves for a wing with ellipticsl chord distribution, showing the
effects of 30° sweepback.
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method of calculation deseribed in this paper presents no
particular difficulty in these regions. As a test of the ac-
curacy obtainable, the induced downwash was computed at
a point near the edge of a circular plate in nonlifting poten-
tial and flow was found to check almost exactly with the
known solution.

Nevertheless, results obtained for the tips have qualitative
rather than quantitative value {(except for low angles of
attack), The validity of the theory is actually limited by the
existence of strong tip vortices, which may cause the vortex
sheet to curl up out of the plane in which it is assumed to lie.
On the other hand, the high concentration of vorticity as-
sociated with this effect adds appreciably to the drag of the
wing, so that even a general indication of such a concentra-
tion of load at the tips is of value. It should be possible to
design, by the use of the present method, a wing tip that
would avoid this effect by providing a fairly gradual tapering
off of the load spanwise. At the same time, a favorable
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chordwise gradient could be specified. Thus, it appears likely
that an optimum tip for low drag could be deduced.

LangrLey MEMORIAL AERONAUTICAL LABORATORY,
Narronar Apvisory COMMITTEE FOR AERONAUTICS,
Lancrey Friewp, Va., 8ay 16, 1942.
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